Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency

نویسندگان

  • Anne Maillard
  • Sylvain Diquélou
  • Vincent Billard
  • Philippe Laîné
  • Maria Garnica
  • Marion Prudent
  • José-Maria Garcia-Mina
  • Jean-Claude Yvin
  • Alain Ourry
چکیده

Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize) to 90% (wheat), other macronutrients (K-P-S-Mg) were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu) or increased by nutrient deficiency (K-P-Mg) while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively) to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds

Seed formation is an important step of plant development which depends on nutrient allocation. Uptake from soil is an obvious source of nutrients which mainly occurs during vegetative stage. Because seed filling and leaf senescence are synchronized, subsequent mobilization of nutrients from vegetative organs also play an essential role in nutrient use efficiency, providing source-sink relations...

متن کامل

Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers

The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids,...

متن کامل

Phosphorus nutrition influence on leaf senescence in soybean.

Remobilization of mineral nutrients from leaves to reproductive structures is a possible regulatory factor in leaf senescence. The relationship between P remobilization from leaves of soybean (Glycine max [L.] Merr. cv McCall) during reproductive development and leaf senescence was determined by utilizing soil P treatments that supplied deficient, optimum, and supraoptimum soil P levels. The so...

متن کامل

Accumulation and remobilization of amino acids during senescence of detached and attached leaves: in planta analysis of tryptophan levels by recombinant luminescent bacteria.

The process of leaf senescence is biochemically characterized by the transition from nutrient assimilation to nutrient remobilization. The nutrient drain by developing vegetative and reproductive structures has been implicated in senescence induction. The steady-state levels of amino acids in senescing leaves are dependent on the rate of their release during protein degradation and on the rate ...

متن کامل

Metabolic Regulation of Leaf Senescence in Sunflower (Helianthus annuus L.) Plants

The leaf is the main photosynthetic organ of plants and its development a complex process governed by a combination of environmental factors and intrinsic and genetically regulated signals (Van Lijsebettens & Clarke, 1998). Usually, leaf ontogeny includes an early phase of increasing photosynthetic rates while the leaf is actively expanding, a mature phase where such rates peak and a senescence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015